Согласно новому исследованию Филипа Куриана (Philip Kurian), физика-теоретика и директора-основателя Лаборатории квантовой биологии (QBL) в Университете Говарда в Вашингтоне, округ Колумбия, опубликованному в научном журнале Science Advances, живые клетки могут обрабатывать информацию с помощью квантовых механизмов гораздо быстрее, чем классическая биохимическая сигнализация.
Источник изображения: The Quantum Insider
Как известно, квантовые вычислительные системы чувствительны к возмущениям и посторонним шумам, и чтобы их минимизировать, квантовые компьютеры должны функционировать при сверхнизких температурах. Принято считать, что только небольшие объекты, такие как атомы и другие частицы, обычно проявляют квантовые свойства. Биологические системы, наоборот, представляют собой враждебную среду для реализации квантовых вычислений: они имеют сравнительно высокую температуру и хаотичны. К тому же их основные компоненты, такие как клетки, являются громадными по сравнению с атомами.
Исследование Куриана ломает сложившиеся стереотипы. В прошлом году группа под руководством Куриана обнаружила «отчётливо квантовый эффект в белковых полимерах в водном растворе». Как отметил профессор Марко Петтини (Marco Pettini) из Университета Экс-Марсель и Центра теоретической физики CNRS (Франция), «экспериментальное подтверждение однофотонного сверхизлучения в повсеместной биологической архитектуре при тепловом равновесии открывает много новых направлений исследований в квантовой оптике, квантовой теории информации, физике конденсированных сред, космологии и биофизике».
Согласно исследованию, ключевой молекулой, обеспечивающей способность клетки к квантовой обработке информации, является триптофан. Это аминокислота, содержащаяся во многих белках, которая поглощает ультрафиолетовый свет и повторно излучает его на более длинной волне.
Крупные сети триптофана образуются в микротрубочках, амилоидных фибриллах, трансмембранных рецепторах, вирусных капсидах, ресничках, центриолях, нейронах и других клеточных комплексах. Подтверждение QBL квантового сверхизлучения в филаментах (внутриклеточное нитевидное образование) цитоскелета (клеточный каркас) имеет важное последствие: все эукариотические организмы (клетки которых содержат оформленное ядро) могут использовать эти квантовые сигналы для обработки информации.
Для расщепления пищи клетки, подвергающиеся аэробному дыханию, используют кислород и генерируют свободные радикалы, которые могут испускать разрушительные частицы ультрафиолетового излучения с высокой энергией. Триптофан может поглощать ультрафиолетовое излучение и повторно излучать его с меньшей энергией. И, как показало исследование QBL, очень крупные триптофановые сети делают этот процесс ещё более эффективным и надёжным благодаря мощным квантовым эффектам.
Сверхизлучение в филаментах цитоскелета происходит примерно за пикосекунду — миллионную долю микросекунды. Эти триптофановые сети могут функционировать как квантовая волоконная оптика, которая позволяет эукариотическим клеткам обрабатывать информацию в миллиарды раз быстрее, чем при использовании только химических процессов.
Как отметили исследователи, аневральные организмы, включая бактерии, грибы и растения, которые составляют основную часть биомассы Земли, выполняют сложные вычисления. И поскольку они появились на планете гораздо раньше животных, именно они выполняют подавляющее большинство вычислений на основе углерода на Земле.
Работа Куриана привлекла внимание разработчиков квантовых вычислений, поскольку реализация квантовых эффектов в «шумной» среде позволяет сделать квантовую информационную технологию более устойчивой.
Также результаты исследования прокомментировал квантовый физик Сет Ллойд (Seth Lloyd), профессор машиностроения в Массачусетском технологическом институте. «Это служит напоминанием, что вычисления, выполняемые живыми системами, намного мощнее, чем вычисления, выполняемые искусственными», — отметил он.